Containers and Packaging Recycling System in Japan

Today's Contents

1. Background
2. Scheme of Containers and Packaging Recycling Law
3. Plastic Container and Packaging Recycling
4. Activities of Waste Prevention 5. Conclusion

Today's Contents

1. Background
2. Scheme of Containers and Packaging Recycling Law
3. Plastic Container and Packaging Recycling
4. Activities of Waste Prevention
5. Conclusion

Background of legal framework

Keywords are "final disposal site", "60\%" and "Germany".

* When the law was established(1997), landfill sites would have reached their capacity in 7 to 9 years if no countermeasures were taken.
* As containers and packaging accounted for approx. 60\% (in volume) of domestic waste, it was decided to take action.
* Germany started recycling containers and packaging in 1991 (4 years before the enactment of the containers/packaging recycling law), and Japan decided it could not fall behind other countries.

Waste generation in Tokyo (23 Cities Area)

14,000,000
 (population)

1997 Establishment
1999 Enactment

6,000,000
1999 Enactment
(tons)

12,000,000

- MSW volume
- Population

10,000,000 \qquad

The remaining capacity of landfill sites across Japan was
only 8.5 years when the law was enacted.

Ratio of containers and packaging in household waste (FY2012, in volume)

(Source: Survey on use and disposal of containers and packaging waste by the Ministry of the Environment)

Today's Contents

1. Background
2. Scheme of Containers and Packaging Recycling Law
3. Plastic Container and Packaging Recycling
4. Activities of Waste Prevention
5. Conclusion

Purpose and features of the law

It aims at household waste reduction and effective use of resources by developing a recycling program of containers and packaging waste discharged as general domestic waste.

- It clarifies the division of responsibilities: service providers are responsible for recycling. (extended producer responsibility)

Classification of waste

Specially Controlled Municipal/Industrial Waste

Hazardous wastes, such as PCBs, asbestos, infectious waste, etc.

Roles and responsibilities

EPR (Extended Producer Responsibility)

EPR was defined by the OECD. It is an environmental policy approach of extending physical and financial responsibilities fully or partially to manufacturers who most affect the design and manufacturing of products including containers and packaging.

EPR was introduced to Japan when the responsibilities for containers and packaging waste disposal, which municipal governments used to have, were partially transferred to business operators based on the enforcement of the containers ad packaging law.

Who is responsible for recycling?

<General case> Business operators that newly use the target containers and packaging are responsible for recycling.

What are Containers and Packaging?

Amount of separated collection of containers and packaging recycling in all municipalities (FY2013)

Classification of containers and packaging	Amount of sorted collection (in 1000 tons)
Steel containers	194
Aluminum containers	131
Paper containers for beverage	14
Corrugated cardboard	610
Glass bottles	(no color)
	(brown)
	226
PET bottles	201
Paper containers and packaging	302
Plastic containers and packaging	91

Recycling Flow

Case of Meguro City

Trend of Trade Volume

Plastic containers and packaging

Trends in Bid Prices (weighted average)

Clear glass bottles
Brown glass bottles
Other glass bottles
\rightarrow
PET bottles
\qquad Paper

* Plastic (average)
_. Plastic containers and packaging (excluding white trays)
Plastic (chemically recycled)

Today's Contents

1. Background

2. Scheme of Containers and

Packaging Recycling Law
3. Plastic Container and Packaging Recycling
4. Activities of Waste Prevention
5. Conclusion

Recycling Methods

\star There are several plastic container and packaging recycling methods.
(Examples of recycling)

Recycling Methods

Plastic containers and packaging (FY2013)

Use of Recycled Plastic Containers and Packaging

Approx. 60\% and 40\% of recycled plastic is used for chemical recycling and material recycling, respectively.

Plastic traded in FY2013

Recycled products and use (white trays excluded)

* Actual value of plastic that was received in FY2013 and recycled by the end of June 2014.

Plastic Containers and Packaging: Flow of Material Recycling

Plastic containers and packaging recycled into pallet

1. Transported to recycling plant and put into machinery.

2. What cannot be recycled is removed and broken into small pieces.

Pallet-making plant

4. Grains are melted and send to machinery.

Source: What is the Containers and Packaging Recycling Law on Japan Containers and Packaging Recycling Association website

Raw chemical material for coke oven (conducted by Nippon Steel and Sumitomo Metal Corp., etc.)

Goke oven

Iron and PVC are removed from waste plastic (bale) transported from municipalities to the recycling plant and heated at $100^{\circ} \mathrm{C}$ to make into grains.

It is mixed into coal at the ratio of 1 to 2% and put into the carbonization chamber of a coke oven.

The carbonization chamber is oxygen free heated to $1200^{\circ} \mathrm{C}$ and waste plastic is thermally decomposed.

Decomposed high-temperature gas is cooled and made into coke oven gas (40%) for power generation, hydrocarbon oil (40%) to be used as a chemical material, and coke (20%) to be used as blast furnace reductant.

Blast furnace reductant (performed by JFE Plastic Resources Corp.)

Iron and PVC are removed from waste plastic (bale) transported from municipalities to recycling plants and are crushed into small pieces and pressed to reduce their volume to make recycled plastic grains.

Recycled plastic grains are put into a blast furnace at a steel plant at approx. $350^{\circ} \mathrm{C}$ in oxygen-free conditions.

Recycled plastic grains serve as reductant to remove oxygen (O) from iron ore $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ in a blast furnace to make steel.

Gas generated in the process is used for power generation.

Gasification (performed by Showa Denko K.K., etc.)

Waste plastic (bale) transported from municipalities to a recycling plant is crushed into small pieces and firmly pressed.

It is then put into a two-stage gasification furnace.
Sand heated to $600-800^{\circ} \mathrm{C}$ flows into a low-temperature gasification furnace and waste plastic makes contact with it to be decomposed into hydrocarbon, carbon monoxide, hydrogen and char (carbonized solid).

Gas generated in a lowtemperature gasification furnace is put into a high-temperature gasification furnace at 1,300$1,500^{\circ} \mathrm{C}$ and reacts with steam to become syngas, which is mainly made from carbon monoxide and hydrogen.

Generated syngas is used as a raw material at chemical plants producing ammonia, hydrogen, methanol, acetic acid, etc.

Today's Contents

1. Background
2. Scheme of Containers and Packaging Recycling Law
3. Plastic Container and Packaging

Recycling
4. Activities of Waste Prevention
5. Conclusion

Design for Environment (DfE)

Voluntary Design Guideline for Designated PET Bottles (1992)

Soft drinks (including milk beverages), Specific flavoring (soy sauce), Alcohol

Discharge Control Effect of Regular Reporting System

- Regular reporting system

Business operators that use more than 50 tons of containers and packaging annually (business operators that use a large volume of containers and packaging)
Obliged to report the volume of containers and packaging they use, efforts for usage rationalization (charge fees on shopping bags, encourage non-use, etc.) and their effects and usage unit of containers and packaging every fiscal year.
■ Containers and packaging reduction after introduction of regular reporting system

Unit: ton Trend of Total Amount of Containers and Packaging Used by Business Operators

Reduction Efforts by Business Operators

FY2012 Results of Reduction (compared to FY2004)

Material	FY2015 target (compared to FY2004)	FY2012 results	Total reduction from FY2006	Note
Glass bottle	2.8\% reduction by average weight per bottle	2.1\%	143,000 tons	
PET bottle	15% reduction for all designated PET bottles	13.0\%	331,000 tons	Upward revision of 2015 target from 10\%
Paper containers and packaging	11% reduction in total amount	9.9\%	711,000 tons	Upward revision of 2015 target from 8\%
Plastic containers and packaging	13\% reduction	11.5\%	58,000 tons	
Steel can	5% reduction by average weight per can	4.9\%	115,000 tons	Upward revision of 2015 target from 4\%
Aluminum can	3% reduction by average weight per can	3.8\%	53,000 tons	
Paper beverage container *2	3% reduction for paper 500-ml milk pack	1.0\%	165,000 tons	
Cardboard	5% reduction by average weight per 1 square meter	3.6\%	985,000 tons	Upward revision of 2015 target from 1.5\%

*1 Targets of each organization are reviewed and revised as needed.
*2 Compared to 2005. Specifications of raw paper and pack paper are compared.

Consumers' Efforts (shopping bags)

Ratio of Containers and Packaging in Household Waste

Today's Contents

1. Background
2. Scheme of Containers and Packaging Recycling Law
3. Plastic Container and Packaging Recycling
4. Activities of Waste Prevention
5. Conclusion

Cooperation with residents for success of the law

* Source separation

* To set various categories
* To be practiced perfectly through residents' cooperation and understanding

Challenges Facing Containers and Packaging Recycling System

* Hard to understand separation criteria in households
* No recycling scheme for plastic goods that are not containers or packaging
* Municipality participation ratio in this system
* Cost reduction

Thank you for your attention!

